Colorectal Cancer

Conversations with Oncology Investigators Bridging the Gap between Research and Patient Care

FACULTY INTERVIEWS

Alan P Venook, MD Scott Kopetz, MD, PhD Zev Wainberg, MD, MSc Howard S Hochster, MD

EDITOR

Neil Love, MD

CONTENTS

2 Audio CDs

G Subscribe to Podcasts at ResearchToPractice.com/Podcasts

f Follow us at Facebook.com/ResearchToPractice 🎐 Follow us on Twitter @DrNeilLove

Colorectal Cancer Update

A Continuing Medical Education Audio Series

OVERVIEW OF ACTIVITY

Approximately 135,000 people were diagnosed with colon or rectal cancer in the United States in 2017 alone, with nearly 50,000 of these individuals succumbing to their disease. Published results from ongoing trials continually lead to the emergence of new therapeutic targets and regimens, thereby altering existing management algorithms. In order to offer optimal patient care, including the option of clinical trial participation, the practicing medical oncologist must be well informed of these advances. To bridge the gap between research and patient care, *Colorectal Cancer Update* uses one-on-one discussion with leading gastrointestinal oncology investigators. By providing access to the latest scientific developments and the perspectives of experts in the field, this CME activity assists medical oncologists with the formulation of up-to-date management strategies.

LEARNING OBJECTIVES

- Formulate an individualized approach to the selection of adjuvant chemotherapy regimens and the duration of treatment for patients with standard- and high-risk colon cancer.
- Consider patient and disease characteristics in selecting therapy for patients with metastatic colorectal cancer (mCRC), including primary tumor location and presence of potentially targetable genetic abnormalities (eg, BRAF, HER2).
- Appraise the recent approvals of pembrolizumab and nivolumab for patients with microsatellite instability-high or mismatch repair-deficient tumors, and integrate these agents into current mCRC treatment algorithms.
- Devise a rational approach to the incorporation of regorafenib and TAS-102 into the treatment algorithm for mCRC that
 includes consideration of each agent's unique side-effect profile.
- Counsel patients regarding the incidence and manifestation of side effects associated with commonly used systemic
 agents and regimens, and develop a plan to optimally manage these toxicities.
- Recall available and emerging data with other investigational agents currently being tested in clinical trials for CRC, and
 refer eligible patients for trial participation or expanded access programs.

ACCREDITATION STATEMENT

Research To Practice is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

CREDIT DESIGNATION STATEMENT

Research To Practice designates this enduring material for a maximum of 4 AMA PRA Category 1 CreditsTM. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

AMERICAN BOARD OF INTERNAL MEDICINE (ABIM) — MAINTENANCE OF CERTIFICATION (MOC)

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 4 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program. Participants will earn MOC points equivalent to the amount of CME credits claimed for the activity. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit. Please note, this program has been specifically designed for the following ABIM specialty: medical oncology.

Personal information and data sharing: Research To Practice aggregates deidentified user data for program-use analysis, program development, activity planning and site improvement. We may provide *aggregate* and *deidentified* data to third parties, including commercial supporters. We do not share or sell personally identifiable information to any unaffiliated third parties or commercial supporters. Please see our privacy policy at ResearchToPractice.com/Privacy-Policy for more information.

HOW TO USE THIS CME ACTIVITY

This CME activity contains an audio component. To receive credit, the participant should review the CME information, listen to the audio tracks, complete the Post-test with a score of 80% or better and fill out the Educational Assessment and Credit Form located in the back of this booklet or on our website at **ResearchToPractice.com/CCU118/CME**. A complete list of supporting references may also be accessed at **ResearchToPractice.com/CCU118**. The corresponding video program is available as an alternative at **ResearchToPractice.com/CCU118/CME**.

This activity is supported by educational grants from Bayer HealthCare Pharmaceuticals, Genentech BioOncology, Lilly, Merck and Taiho Oncology Inc. 3

3

4

5

TABLE OF CONTENTS

FACULTY INTERVIEWS

Alan P Venook, MD

Professor of Clinical Medicine University of California, San Francisco San Francisco, California

Scott Kopetz, MD, PhD

Associate Professor, Department of Gastrointestinal Medical Oncology Division of Cancer Medicine The University of Texas MD Anderson Cancer Center Houston, Texas

Zev Wainberg, MD, MSc

Associate Professor, Department of Medicine Director, Early Phase Clinical Research Support Co-Director, UCLA GI Oncology Program Jonsson Comprehensive Cancer Center Los Angeles, California

Howard S Hochster, MD Associate Director (Clinical Research) Yale Cancer Center Professor of Medicine Yale School of Medicine

New Haven, Connecticut

6 POST-TEST

7 EDUCATIONAL ASSESSMENT AND CREDIT FORM

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration. Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

If you would like to discontinue your complimentary subscription to *Colorectal Cancer Update*, please email us at **Info@ResearchToPractice.com**, call us at (800) 648-8654 or fax us at (305) 377-9998. Please include your full name and address, and we will remove you from the mailing list.

EDITOR

Neil Love, MD Research To Practice Miami, Florida

CONTENT VALIDATION AND DISCLOSURES

Research To Practice (RTP) is committed to providing its participants with high-quality, unbiased and state-of-theart education. We assess conflicts of interest with faculty, planners and managers of CME activities. Conflicts of interest are identified and resolved through a conflict of interest resolution process. In addition, all activity content is reviewed by both a member of the RTP scientific staff and an external, independent physician reviewer for fair balance, scientific objectivity of studies referenced and patient care recommendations.

FACULTY — The following faculty (and their spouses/partners) reported relevant conflicts of interest, which have been resolved through a conflict of interest resolution process: **Dr Venook** — Advisory Committee: Bayer HealthCare Pharmaceuticals, Genentech BioOncology; Contracted Research: Bristol-Myers Squibb Company, Genentech BioOncology, Merck, Taiho Oncology Inc. **Dr Kopetz** — Consulting Agreements: Amgen Inc, Bayer HealthCare Pharmaceuticals, Genentech BioOncology. **Dr Wainberg** — Advisory Committee: Genentech BioOncology, Lilly, Merck, Novartis; Contracted Research: Bristol-Myers Squibb Company, Celgene Corporation, Genentech BioOncology, Lilly, Merck, Novartis. **Dr Hochster** — Consulting Agreements: Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Genomic Health Inc.

EDITOR — **Dr Love** is president and CEO of Research To Practice, which receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma, Adaptive Biotechnologies, Agendia Inc, Agios Pharmaceuticals Inc, Amgen Inc, Ariad Pharmaceuticals Inc, Array BioPharma Inc, Astellas Pharma Global Development Inc, AstraZeneca Pharmaceuticals LP, Baxalta Inc, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Boehringer Ingelheim Pharmaceuticals Inc, Boston Biomedical Pharma Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, CTI BioPharma Corp, Dendreon Pharmaceuticals Inc, Eisai Inc, Exelixis Inc, Foundation Medicine, Genentech BioOncology, Genomic Health Inc, Gilead Sciences Inc, Halozyme Inc, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ijsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Kite Pharma Inc, Lexicon Pharmaceuticals Inc, Lilly, Medivation Inc, a Pfizer Company, Merck, Merrimack Pharmaceuticals, an Amgen subsidiary, Pfizer Inc, Pharmacyclics LLC, and AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seattle Genetics, Sigma-Tau Pharmaceuticals Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro Inc, Teva Oncology and Tokai Pharmaceuticals Inc.

RESEARCH TO PRACTICE STAFF AND EXTERNAL REVIEWERS — The scientific staff and reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Interview with Alan P Venook, MD

Tracks 1-24

Track 1 IDEA pooled analysis: Duration of adjuvant oxaliplatin-based chemotherapy for Stage III		Track 13	Rates of response and prolonged disease control with immune checkpoint inhibitors in mCRC		
Track 2	colon cancer Identification of patients to receive longer versus shorter duration of	Track 14	Biomarkers for predicting the effectiveness of anti-PD-1/PD-L1 checkpoint inhibitors in mCRC		
Track 3	adjuvant chemotherapy Use of CAPOX versus FOLFOX adjuvant regimens	Track 15	Spectrum of toxicities associated with anti-PD-1/PD-L1 checkpoint inhibitors		
Track 4	Prognostic and predictive value of primary tumor sidedness	Track 16	Phenotypes of microsatellite instability (MSI)-high colon cancer		
Track 5	Intestinal microbiota and colorectal cancer (CRC)	Track 17	Case: A 65-year-old man with multiple recurrences of mCRC receives regorafenib followed by TAS-102		
Track 6	Treatment approach for BRAF V600E-mutated metastatic CRC (mCRC)				
		Track 18	Dosing and tolerability of regorafenib		
Track 7	Prolonged response to T-DM1 in a patient with rapidly progressive	Track 19	Regorafenib-associated tumor cavitation		
Track 8	HER2-amplified mCRC EGFR tyrosine kinase inhibitors in	Track 20	Sequencing regorafenib and TAS-102 as later-line therapy		
	patients with HER2-mutated mCRC	Track 21	TAS-102-associated neutropenia		
Track 9	Effects of diet and lifestyle on outcome in colon cancer	Track 22	California End-of-Life Option Act and aid-in-dying medication		
Track 10	Recommendations for vitamin D supplementation	Track 23	Case: A 66-year-old man undergoes simultaneous resection of primary		
Track 11	Counseling patients about increased physical activity		sigmoid cancer and a solitary liver metastasis followed by pseudoad-		
Track 12	Case: A 46-year-old man with right-		juvant therapy with FOLFOX		
	sided primary MLH1-deficient cecal cancer and bulky nodal disease receives FOLFOXIRI/bevacizumab but discontinues because of toxicity and is switched to pembrolizumab	Track 24	Investigational combination strategies for microsatellite-stable (MSS) mCRC		

Interview with Scott Kopetz, MD, PhD

Tracks 1-23

Track 1	CheckMate 142: Activity of nivolumab in patients with	Track 6	Clinical characterization of MSI-high CRC		
	MSI-high mCRC	Track 7	Reliability in assessment of MSI		
Hack 2	between anti-PD-1/PD-L1 checkpoint inhibitors for mCRC	Track 8	Investigation of predictive		
Track 3	Incidence of high MSI in other		checkpoint inhibition in mCRC		
	cancers: Implications for testing	Track 9	Relationship between mutational		
Track 4	rck 4 Pros and cons of MSI testing methods		load and response to anti-PD-1/ PD-L1 checkpoint inhibitors		
Track 5	First-line treatment with anti-PD-1/ PD-L1 checkpoint inhibitors in mCRC	Track 10	Role of the gut microbiome in the pathogenesis of colon cancer and response to checkpoint inhibitors		

Interview with Dr Kopetz (continued)

Track 11	Rapidity of response to checkpoint inhibitors in patients with MSI-high		trial of irinotecan/cetuximab with or without vemurafenib
	tumors	Track 18	Utility of liquid biopsies in mCRC
Track 12	Neoadjuvant studies of checkpoint inhibitors in MSI-high colon cancer	Track 19	Efficacy and tolerability of irinotecan/cetuximab/vemurafenib
Track 13	Combination strategies with checkpoint inhibitors for MSS mCRC	Track 20	Influence of side-effect profiles in sequencing regorafenib and TAS-102
Track 14	Pseudoprogression with checkpoint inhibitors	Track 21	Case: A 52-year-old man with mCRC is found to have HER2
Track 15	Consensus molecular subtypes in colon cancer		amplification and responds to trastuzumab/pertuzumab
Track 16	Prediction of treatment benefit among molecular subtypes	Track 22	Activity of T-DM1 in HER2-amplifed mCRC
Track 17	Case: A 67-year-old woman with BRAF V600E-mutated mCRC enrolls on the SWOG-S1406 clinical	Track 23	Multiplex testing for patients with mCRC

Interview with Zev Wainberg, MD, MSc

Tracks 1-18

Track 1	Case: A 68-year-old man with resected right-sided primary		oxaliplatin and irinotecan-based regimens	
	BRAF V600E-mutated, MSI-high mCRC and disease progression on	Track 10	Dose reductions for TAS-102-related cytopenia	
	experiences a 2-year response to	Track 11	Initial dosing of regorafenib	
	nivolumab	Track 12	RAS testing in colon cancer	
Track 2	Targeted therapy for BRAF-mutated mCRC	Track 13	RAS oncogene in the pathogenesis of colon and other cancers	
Track 3	Emergence of checkpoint inhibitors as treatment options for MSI-high mCRC	Track 14	Oncogene addiction in BRAF-mutated colon cancer compared to other solid tumors	
Track 4	Tolerability of checkpoint inhibitors in gastrointestinal cancers	Track 15	Efforts to develop KRAS-targeted agents	
Track 5	Treatment duration and scheduling of checkpoint inhibitors	Track 16	Case: A 55-year-old woman with moderately differentiated N1	
Track 6	Novel research strategies with checkpoint inhibitors in CRC		colon cancer and 2 of 24 positive lymph nodes receives 3 months	
Track 7	Gastrointestinal microbiome and new drug development	Track 17	Degree of benefit needed for	
Track 8	Treatment of MSI-high mCRC that		chemotherapy	
	progresses on checkpoint inhibitor therapy	Track 18	Counseling patients about adjuvant chemotherapy	
Track 9	TAS-102 after disease progression on standard fluoropyrimidine,			

Interview with Howard S Hochster, MD

Tracks 1-21

Track 1	Case: A 58-year-old man with T3N1 sigmoid colon cancer receives 3 months of adjuvant CAPOX	Track 13	Case: A 40-year-old man with metastatic rectal cancer and Lynch syndrome receives atezolizumab/				
Track 2	SWOG-S1613: A Phase II study comparing pertuzumab/ trastuzumab to cetuximab/irinotecan for HER2-amplified mCRC	Track 14	bevacizumab on a clinical trial Anti-PD-1/PD-L1 checkpoint inhibitor-associated immune-related adverse events				
Track 3	STEAM Phase II trial results: Sequential or concurrent	Track 15	Perspective on hyperthermic intraperitoneal chemotherapy				
	FOLFOXIRI/bevacizumab versus FOLFOX/bevacizumab as first-line treatment of mCRC	Track 16	Ongoing Alliance A021502 Phase III study of adjuvant chemotherapy alone or with aterolizumab for				
Track 4	FOLFOXIRI/bevacizumab for BRAF-mutated mCRC		Stage III colon cancer with deficier DNA mismatch repair				
Track 5	Onset and delayed recovery of neutropenia as an indicator of response to TAS-102	Track 17	Case: A 48-year-old woman with BRAF V600E-mutated mCRC initially receives FOLFIRINOX followed by cetuximab/encorafenib on a clinical trial				
Track 6	Ongoing studies combining TAS-102 with other agents in earlier disease						
Track 7	settings	Track 18	High mutational burden in patients with BRAF mutations				
	refractory mCRC receives TAS-102, bevacizumab and irinotecan on a clinical trial	Track 19	SWOG-S1406: Results of a Phase II trial of irinotecan/cetuximab with or without vemurafenib for				
Track 8	Considerations in sequencing	Track 20	BRAF-mutated mCRC				
Track 9	CALGB/SWOG-8005: Relationship among somatic DNA mutations, MSI status, mutational load and survival in mCRC	nack 20	III BEACON study evaluating cetuximab, encorafenib and binimetinib combination therapy for BRAF V600E-mutated mCRC				
Track 10	Potential rationale for the efficacy of atezolizumab/bevacizumab in MSI-high mCRC	Track 21	COTEZO IMblaze 370: A Phase III study of atezolizumab with or without cobimetinib versus				
Track 11	Incidence of MSI-high tumors in mCRC		MSS mCRC				
Track 12	Ongoing Phase III studies of anti-PD-1/PD-L1 checkpoint inhibitors as first-line therapy for mCRC						

Video Program

View the corresponding video interviews with (from left) Drs Venook, Kopetz, Wainberg and Hochster by Dr Love <u>www.ResearchToPractice.com/CCU118/Video</u>

SELECT PUBLICATIONS

A phase III study of pembrolizumab (MK-3475) vs chemotherapy in microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) stage IV colorectal carcinoma (KEYNOTE-177). NCT02563002

Andre T et al. Oxaliplatin-based chemotherapy for patients with stage III colon cancer: Disease free survival results of the three versus six months adjuvant IDEA France Trial. *Proc ASCO* 2017; Abstract 3500.

André T et al. Analysis of tumor PD-L1 expression and biomarkers in relation to clinical activity in patients (pts) with deficient DNA mismatch repair (dMMR)/high microsatellite instability (MSI-H) metastatic colorectal cancer (mCRC) treated with nivolumab (NIVO) + ipilimumab (IPI): CheckMate 142. *Proc ESMO* 2017;Abstract 484PD.

Arnold D et al. Prognostic and predictive value of primary tumour side in patients with RAS wildtype metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomised trials. *Ann Oncol* 2017;28(8):1713-29.

Cohen R et al. **BRAF-mutated colorectal cancer: What is the optimal strategy for treatment?** *Curr Treat Options Oncol* 2017;18(2):9.

Colorectal cancer metastatic dMMR immuno-therapy (COMMIT) study: A randomized phase III study of mFOLFOX6/bevacizumab combination chemotherapy with or without atezolizumab or atezolizumab monotherapy in the first-line treatment of patients with deficient DNA mismatch repair (dMMR) metastatic colorectal cancer. NCT02997228

Fuchs MA et al. **Predicted vitamin D status and colon cancer recurrence and mortality in CALGB 89803 (Alliance).** *Ann Oncol* 2017;28(6):1359-67.

Grothey A et al; CORRECT Study Group. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. *Lancet* 2013;381(9863):303-12.

Huijberts S et al. BEACON CRC: Safety lead-in (SLI) for the combination of binimetinib (BINI), encorafenib (ENCO), and cetuximab (CTX) in patients (pts) with BRAF-V600E metastatic colorectal cancer (mCRC). *Proc ESMO* 2017;Abstract 517P.

Hurwitz H et al. Updated efficacy, safety, and biomarker analyses of STEAM, a randomized, open-label, phase II trial of sequential (s) and concurrent (c) FOLFOXIRI-bevacizumab (BV) vs FOLFOX-BV for first-line (1L) treatment (tx) of patients with metastatic colorectal cancer (mCRC). Gastrointestinal Cancers Symposium 2017;Abstract 657.

Innocenti F et al. Somatic DNA mutations, MSI status, mutational load (ML): Association with overall survival (OS) in patients (pts) with metastatic colorectal cancer (mCRC) of CALGB/SWOG 80405 (Alliance). *Proc ASCO* 2017;Abstract 3504.

Iveson T et al. Final DFS results of the SCOT study: An international phase III randomised (1:1) non-inferiority trial comparing 3 versus 6 months of oxaliplatin based adjuvant chemotherapy for colorectal cancer. *Proc ASCO* 2017;Abstract 3502.

Kang Y et al. Gut microbiota and colorectal cancer: Insights into pathogenesis for novel therapeutic strategies. Z Gastroenterol 2017;55(9):872-80.

Kim S et al. Tumor sidedness and intrinsic subtypes in patients with stage II/III colon cancer: Analysis of NSABP C-07 (NRG Oncology). Proc ASCO 2017;Abstract 3514.

Kopetz S et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG S1406). *Proc ASCO* 2017;Abstract 3505.

Le DT et al. **PD-1 blockade in tumors with mismatch-repair deficiency.** *N Engl J Med* 2015;372(26):2509-20.

Lenz HJ et al. Impact of consensus molecular subtyping (CMS) on overall survival (OS) and progression free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). *Proc ASCO* 2017;Abstract 3511.

Mehta RS et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. *JAMA Oncol* 2017;3(7):921-7.

Mima K et al. The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. *Surg Oncol* 2017;26(4):368-76.

Ng K et al. SUNSHINE: Randomized double-blind phase II trial of vitamin D supplementation in patients with previously untreated metastatic colorectal cancer. *Proc ASCO* 2017; Abstract 3506.

Ohtsu A et al. Onset of neutropenia as an indicator of treatment response in the phase III RECOURSE trial of TAS-102 vs placebo in patients with metastatic colorectal cancer. *Proc ASCO* 2016;Abstract 3556.

Overman MJ et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol 2017;18(9):1182-91.

Parikh A et al. **Prolonged response to HER2-directed therapy in a patient with HER2-amplified,** rapidly progressive metastatic colorectal cancer. J Natl Compr Canc Netw 2017;15(1):3-8.

Parseghian C et al. Evaluating for pseudoprogression in colorectal and pancreatic tumors treated with immunotherapy. *Proc ESMO* 2017;Abstract PD-023.

Raskov H et al. Linking gut microbiota to colorectal cancer. J Cancer 2017;8(17):3378-95.

Segelov E et al. Survival by sidedness of metastatic colorectal cancer (mCRC) treated with epidermal growth factor receptor antibodies (EGFR-Ab) in the refractory setting: A population-based study of 1509 patients. *Proc ESMO* 2017;Abstract 587P.

Shi Q et al. Prospective pooled analysis of six phase III trials investigating duration of adjuvant (adjuv) oxaliplatin-based therapy (3 vs 6 months) for patients (pts) with stage III colon cancer (CC): The IDEA (International Duration Evaluation of Adjuvant chemotherapy) collaboration. *Proc ASCO* 2017;Abstract LBA1.

Sobrero AF et al. FOLFOX4/XELOX in stage II-III colon cancer: Efficacy results of the Italian three or six colon adjuvant (TOSCA) trial. *Proc ASCO* 2017;Abstract 3501.

Sundar R et al. Targeting *BRAF*-mutant colorectal cancer: Progress in combination strategies. *Cancer Discov* 2017;7(6):558-60.

Taieb J et al. Association of prognostic value of primary tumor location in stage III colon cancer with RAS and BRAF mutational status. *Proc ASCO* 2017;Abstract 3515.

Van Blarigan E et al. American Cancer Society (ACS) Nutrition and Physical Activity Guidelines after colon cancer diagnosis and disease-free (DFS), recurrence-free (RFS), and overall survival (OS) in CALGB 89803 (Alliance). *Proc ASCO* 2017;Abstract 10006.

Venook AP et al. Primary tumor location as an independent prognostic marker from molecular features for overall survival in patients with metastatic colorectal cancer: Analysis of CALGB/ SWOG 80405 (Alliance). *Proc ASCO* 2017;Abstract 3503.

Colorectal Cancer Update — Volume 9, Issue 1

QUESTIONS (PLEASE CIRCLE ANSWER):

- The IDEA pooled analysis of studies evaluating the duration of adjuvant oxaliplatin-based therapy for patients with Stage III colon cancer demonstrated that survival outcomes were not inferior for patients with lower-risk disease who received 3 months compared to 6 months of therapy.
 - a. True
 - b. False
- 2. Which of the following patients with mCRC do not derive clinical benefit from the addition of EGFR antibodies to first-line chemotherapy?
 - a. Patients with left-sided primary cancers
 - b. Patients with right-sided primary cancers

3. Approximately what proportion of patients with CRC have HER2-amplifed or HER2-mutated disease?

- a. 20%
- b. 10%
- c. 4%

4. In the randomized Phase II SWOG-S1613 study, which nonchemotherapy-containing HER2-targeted doublet will be compared to cetuximab/irinotecan for HER2-amplified mCRC?

- a. T-DM1/lapatinib
- b. Trastuzumab/lapatinib
- c. Trastuzumab/pertuzumab

5. Which of the following phenotypes tends to be associated with MSI-high colon cancer?

- a. Right sidedness
- b. Mucinous type
- c. BRAF mutation
- d. All of the above

- 6. What was the response rate in the CheckMate 142 study of single-agent nivolumab for previously treated MSI-high or mismatch repair-deficient mCRC?
 - a. 50%
 - b. 25%
 - c. 10%
- Both pembrolizumab and nivolumab are indicated for the treatment of metastatic MSI-high or mismatch repair-deficient CRC that progresses after previous therapy.
 - a. True
 - b. False
- 8. In patients with MSI-high CRC the mutational load is _____ compared to the mutational load in patients with MSS CRC.
 - a. Approximately 100 times higher
 - b. Roughly equivalent
 - c. Lower
- 9. Which of the following results was observed in the SWOG-S1406 study with the addition of vemurafenib to cetuximab/irinotecan for patients with treatment-refractory BRAF V600E-mutated mCRC?
 - a. Doubling of progression-free survival
 - b. Tripling of the disease control rate
 - c. Significant increase in skin toxicity
 - d. All of the above
 - e. Both a and b
- 10. The onset and delayed recovery of neutropenia has been demonstrated to be a positive predictive factor for outcomes with TAS-102 treatment.
 - a. True
 - b. False

EDUCATIONAL ASSESSMENT AND CREDIT FORM

Colorectal Cancer Update — Volume 9, Issue 1

Research To Practice is committed to providing valuable continuing education for oncology clinicians, and your input is critical to helping us achieve this important goal. Please take the time to assess the activity you just completed, with the assurance that your answers and suggestions are strictly confidential.

PART 1 — Please tell us about your experience with this educational activity

How would you characterize your level of knowledge on the following topics?

4 = Excellent $3 = Good$ $2 = Ade$	equate 1 :	= Suboptimal
	BEFORE	AFTER
IDEA pooled analysis evaluating the duration of adjuvant oxaliplatin-based chemotherapy for Stage III colon cancer	4321	4321
Clinical trial data with and indications for anti-PD-1 checkpoint inhibitors in the treatment of MSI-high or mismatch repair-deficient mCRC	4321	4321
SWOG-S1406 trial: Efficacy and tolerability of irinotecan/cetuximab and vemurafenib for BRAF-mutated mCRC	4321	4321
Strategies based on side-effect profiles for sequencing TAS-102 and regoratenib for mCRC $% \left({{\rm S}_{\rm A}} \right)$	4321	4321
Ongoing Alliance A021502 Phase III study of adjuvant chemotherapy alone or combined with atezolizumab for Stage III colon cancer with deficient DNA mismatch repair	4321	4321
Practice Setting: Academic center/medical school Community cancer center/hospital Solo practice Government (eg. VA) Other (please specify) 	G	roup practice
Approximately how many new patients with colorectal cancer do you see ner year?		
Approximately now many new patients with colorectal cancel to you see per year:		••
Was the activity evidence based, tair, balanced and free from commercial blas? Yes		
 This activity validated my current practice Create/revise protocols, policies and/or procedures Change the management and/or treatment of my patients Other (please explain): 		
If you intend to implement any changes in your practice, please provide 1 or more \ensuremath{o}	examples:	
The content of this activity matched my current (or potential) scope of practice. Yes No If no, please explain:		
Please respond to the following learning objectives (LOs) by circling the appropriate	selection:	
4 = Yes $3 =$ Will consider $2 =$ No $1 =$ Already doing N/M = LO not met	N/A = Not ap	plicable
As a result of this activity, I will be able to:		
• Formulate an individualized approach to the selection of adjuvant chemotherapy regimens and the duration of treatment for patients with standard- and high-risk colon cancer.		2 1 N/M N/A
• Consider patient and disease characteristics in selecting therapy for patients with metastatic colorectal cancer (mCRC), including primary tumor location and presence of potentially targetable genetic abnormalities (eg, BRAF, HER2)		2 1 N/M N/A
• Appraise the recent approvals of pembrolizumab and nivolumab for patients with microsatellite instability-high or mismatch repair-deficient tumors, and integrate these agents into current mCRC treatment algorithms.		2 1 N/M N/A
• Devise a rational approach to the incorporation of regoratenib and TAS-102 into the treatment algorithm for mCRC that includes consideration of each agent's unique side-effect profile.		2 1 N/M N/A

EDUCATIONAL ASSESSMENT AND CREDIT FORM (continued)

As a result of this activity, I will be able to:

Please describe any clinical situations that you find difficult to manage or resolve that you would like to see addressed in future educational activities:

Would you recommend this activity to a colleague?

🗆 Yes 🔅 🗆 No

If no, please explain:

PART 2 — Please tell us about the faculty and editor for this educational activity

	4 = Excellent	3 = Good	d 2	= Ade	equate	: 1 =	= Suboptim	al		
Faculty			Knowled	ge of	subje	ct matter	Effective	ness	as an	educator
Alan P Venook, I	MD		4	3	2	1	4	3	2	1
Scott Kopetz, M	D, PhD		4	3	2	1	4	3	2	1
Zev Wainberg, N	ID, MSc		4	3	2	1	4	3	2	1
Howard S Hochs	ster, MD		4	3	2	1	4	3	2	1
Editor			Knowled	ge of	subje	ct matter	Effective	ness	as an	educator
Neil Love, MD			4	3	2	1	4	3	2	1

REQUEST FOR CREDIT — Please print clearly

Name:							
Professional Designation:							
\Box MD		PharmD	\Box NP	\Box RN	🗆 PA	Other	
Street Address:						Box/Suite:	
City, State, Zip:							
Telephone	e:			Fax:			
Fmail							

Research To Practice designates this enduring material for a maximum of 4 AMA PRA Category 1 Credits[™]. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

I certify my actual time spent to complete this educational activity to be _____ hour(s).

□ I would like Research To Practice to submit my CME credits to the ABIM to count toward my MOC points. I understand that because I am requesting MOC credit, Research To Practice will be required to share personally identifiable information with the ACCME and ABIM. Additional information for MOC credit (required):

Date of Birth (Month and Day Only): ____/ ___ ABIM 6-Digit ID Number:

If you are not sure of your ABIM ID, please visit http://www.abim.org/online/findcand.aspx.

The expiration date for this activity is February 2019. To obtain a certificate of completion and receive credit for this activity, please complete the Post-test, fill out the Educational Assessment and Credit Form and fax both to (800) 447-4310, or mail both to Research To Practice, One Biscayne Tower, 2 South Biscayne Boulevard, Suite 3600, Miami, FL 33131. You may also complete the Post-test and Educational Assessment online at www.ResearchToPractice.com/CCU118/CME.

Colorectal Cancer[™]

UPDATE

Neil Love, MD Research To Practice One Biscayne Tower 2 South Biscayne Boulevard, Suite 3600 Miami, FL 33131 Copyright © 2018 Research To Practice. This activity is supported by educational grants from Bayer HealthCare Pharmaceuticals, Genentech BioOncology, Lilly, Merck and Taiho Oncology Inc.

Research To Practice®

Research To Practice is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

Release date: February 2018 Expiration date: February 2019 Estimated time to complete: 4 hours This program is printed on MacGregor XP paper, which is manufactured in accordance with the world's leading forest management certification standards.

PRSRT STD U.S. POSTAGE **PERMIT** #1317 PAID MIAMI, FL